Entrapment of photosystem I within self-assembled films.
نویسندگان
چکیده
We have developed a process to incorporate an integral membrane protein, Photosystem I (PSI), into an organic thin film at an electrode surface and thereby insulate the protein complex on the surface while mimicking its natural environment. The PSI complex, which is primarily more hydrophobic on the exterior than interior, is hydrophobically confined in vivo within the thylakoid membrane. To mimic the thylakoid membrane and entrap PSI on an electrode, we have designed a series of steps using a thin self-assembled monolayer (SAM) to adsorb and orient PSI followed by exposures to longer-chained methyl-terminated alkanethiols that place exchange with components of the original SAM in the interprotein domains. In this process, PSI is first adsorbed onto a HOC(6)S/Au substrate through a short exposure to a dilute solution of the protein to achieve a protein coverage of approximately 25%. The PSI/HOC(6)S/Au substrate is then placed into a solution containing one of various longer-chained alkanethiols including C(22)SH or C(18)OC(19)SH. Changes in thickness, interfacial capacitance, infrared spectra, and surface wettability were used to assess the extent of backfilling by the long-chained thiols. The coverage of the protein layer and the solvent used for backfilling affected the rate and quality of the SAM formed in the interprotein regions. After exposure of the PSI layer to solvents containing alkanethiols, there was only minor loss of protein on the surface and no real change in protein secondary structure as evidenced by reflectance absorption infrared spectroscopy.
منابع مشابه
Electrochemical preparation of Photosystem I-polyaniline composite films for biohybrid solar energy conversion.
In this work, we report for the first time the entrapment of the biomolecular supercomplex Photosystem I (PSI) within a conductive polymer network of polyaniline via electrochemical copolymerization. Composite polymer-protein films were prepared on gold electrodes through potentiostatic electropolymerization from a single aqueous solution containing both aniline and PSI. This study demonstrates...
متن کاملFunctionalized nanoporous gold leaf electrode films for the immobilization of photosystem I.
Plants and some types of bacteria demonstrate an elegant means to capitalize on the superabundance of solar energy that reaches our planet with their energy conversion process called photosynthesis. Seeking to harness Nature's optimization of this process, we have devised a biomimetic photonic energy conversion system that makes use of the photoactive protein complex Photosystem I, immobilized ...
متن کاملPhotocatalytic photosystem I/PEDOT composite films prepared by vapor-phase polymerization.
Photosystem I (PSI) achieves photo-induced charge separation with outstanding internal quantum efficiency and has been used to improve the performance of various photoelectrochemical systems. Herein, we describe a fast and versatile technique to assemble composite films containing PSI and a chosen intrinsically conductive polymer (ICP). A mixture of PSI and a Friedel-Crafts catalyst (FeCl3) is ...
متن کاملSelf-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO
The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth's energy cycle. It is the central molecule in the "Z-scheme" of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally fr...
متن کاملElectrochemistry and photoelectrochemistry of photosystem I adsorbed on hydroxyl-terminated monolayers
Direct electrochemistry studies on Photosystem I (PSI) were performed using cyclic voltammetry and square wave voltammetry. PSI centers stabilized in aqueous solution by Triton X-100 surfactant were adsorbed on hydroxyl-terminated hexanethiol modified gold electrodes. We have identified the electron donor, P700, and the electron acceptor sites, FA/FB, based on the previously reported preferred ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2006